CL4CTR: A Contrastive Learning Framework for CTR Prediction

Fangye Wang*
School of Computer Science
Fudan University, Shanghai, China
fywang18@fudan.edu.cn

Hansu Gu[†] Seattle, United States hansug@acm.org Yingxu Wang* School of Computer Science Fudan University, Shanghai, China yingxuwang20@fudan.edu.cn

Tun Lu* †
School of Computer Science
Fudan University, Shanghai, China
lutun@fudan.edu.cn

Ning Gu*
School of Computer Science
Fudan University, Shanghai, China
ninggu@fudan.edu.cn

code: https://github.com/cl4ctr/cl4ctr

WSDM 2023

Dongsheng Li Microsoft Research Asia Shanghai, China dongsli@microsoft.com

Peng Zhang*
School of Computer Science
Fudan University, Shanghai, China
zhangpeng_@fudan.edu.cn

Introduction

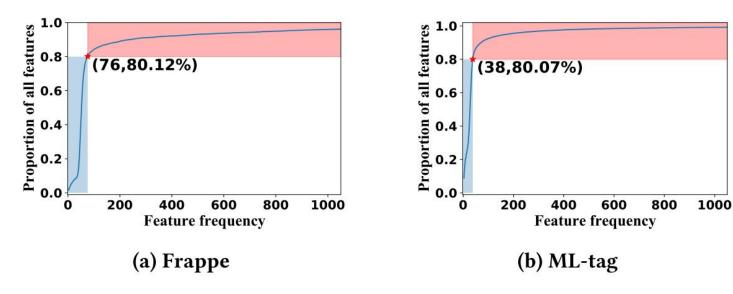


Figure 1: Cumulative distribution of feature frequencies. (38, 80.07%) indicates that features with feature frequencies less than or equal to 38 times account for 80.07% of all features.

Many Click-Through Rate prediction works focused on designing advanced architectures to model complex feature interactions but neglected the importance of feature representation learning.

High frequency features have higher chances to be trained than low frequency features, causing the representations of low frequency features to be sub-optimal.

Method

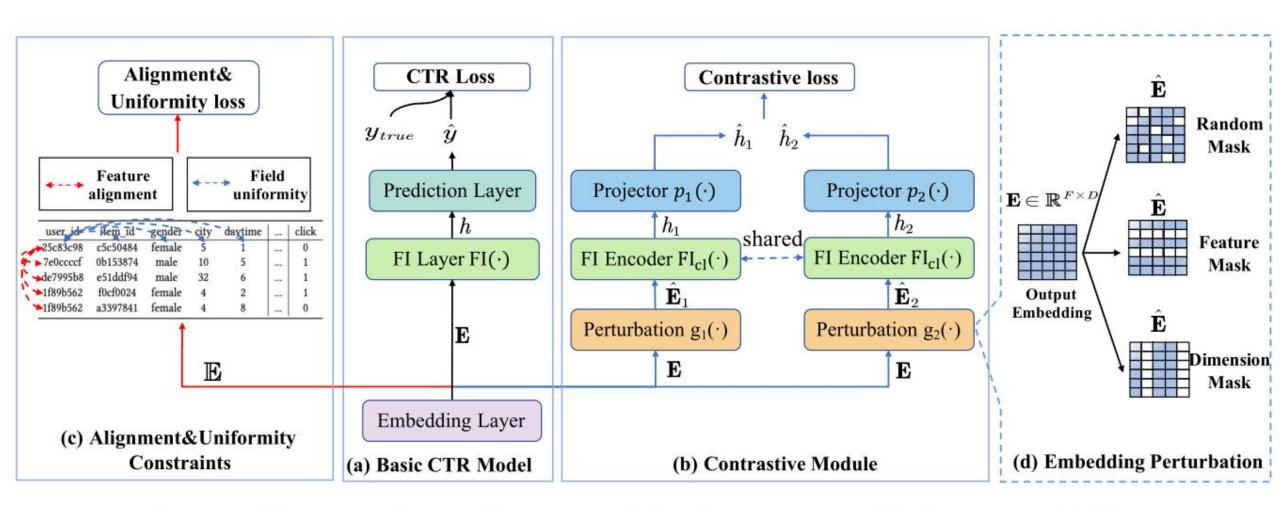
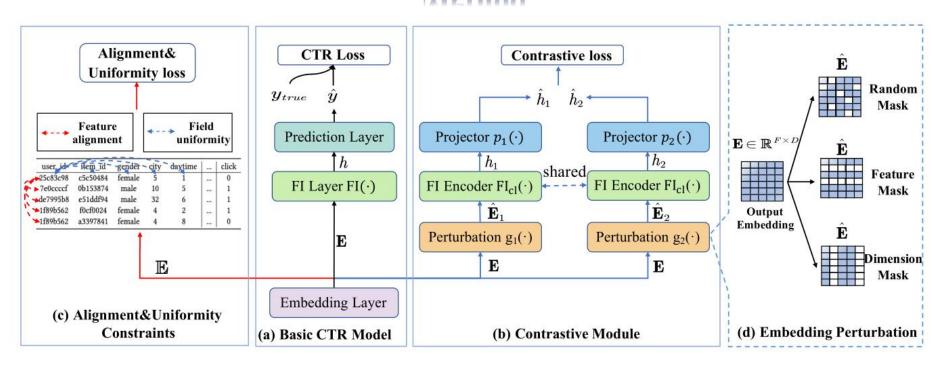


Figure 2: Architecture of the CL4CTR framework. CL4CTR including three components: (a) a basic CTR model; (b) a contrastive module; (c) alignment & uniformity constraints. In contrastive module, we design (d) three embedding perturbation methods.

Method



$$\hat{\mathbf{E}} = \mathbf{g}_r(\mathbf{E}) = \mathbf{E} \cdot \mathbf{I}, \mathbf{I} \sim \text{Bernoulli}(p) \in \mathbb{E}^{F \times D}$$
 (1)

$$\hat{\mathbf{E}} = \mathbf{g}_f(\mathbf{E}) = [\hat{\mathbf{e}}^1; \hat{\mathbf{e}}^2; ...; \hat{\mathbf{e}}^F], \hat{\mathbf{e}}^f = \begin{cases} \mathbf{e}^f, & t \notin \mathcal{T} \\ [\text{mask}], & t \in \mathcal{T} \end{cases}$$
 (2)

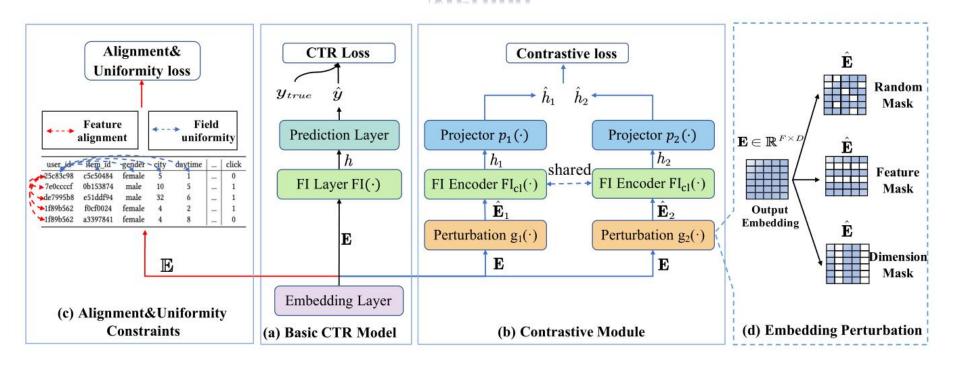
$$\hat{\mathbf{E}} = \mathbf{g}_d(\mathbf{E}) = [d\mathbf{e}^1; d\mathbf{e}^2; ...; d\mathbf{e}^F], d \sim \mathrm{Bernoulli}(p) \in \mathbb{R}^D \quad \text{(3)}$$

$$h_1 = FI_{cl}(\hat{\mathbf{E}}_1), h_2 = FI_{cl}(\hat{\mathbf{E}}_2)$$
 (4)

$$\hat{h}_1 = p_1(h_1), \hat{h}_2 = p_2(h_2)$$
 (5)

$$\mathcal{L}_{cl} = \frac{1}{B} \sum_{i=1}^{B} \left\| \hat{h}_{i,1} - \hat{h}_{i,2} \right\|_{2}^{2}$$
 (6)

Method



$$\mathcal{L}_{ctr} = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \log \left(\sigma \left(\hat{y}_i \right) \right) + (1 - y_i) \log \left(1 - \sigma \left(\hat{y}_i \right) \right) \right)$$

$$F$$

$$(9)$$

$$\mathcal{L}_{a} = \sum_{f=1}^{r} \sum_{\mathbf{e}_{i}, \mathbf{e}_{j} \in \mathcal{E}_{f}} \|\mathbf{e}_{i} - \mathbf{e}_{j}\|_{2}^{2}$$

$$\mathcal{L}_{total} = \mathcal{L}_{ctr} + \alpha \cdot \mathcal{L}_{cl} + \beta \cdot (\mathcal{L}_{a} + \mathcal{L}_{u})$$
(8)

Table 1: An example of multi-field tabular data for CTR prediction. Each row represents an input instance and each column indicates a field. Moreover, each field contains multiple features, but each feature only belongs to one field.

user_id	item_id	gender	city	daytime		click
25c83c98	c5c50484	female	5	1		0
7e0ccccf	0b153874	male	10	5	•••	1
de7995b8	e51ddf94	male	32	6	•••	1
1f89b562	f0cf0024	female	4	2	•••	1
1f89b562	a3397841	female	4	8	•••	0

Table 2: Dataset statistics.

Datasets	Positive	#Training	#Validation	#Test	#Features	#Fields
Frappe	33%	202K	58K	29K	5K	10
ML-tag	33%	1,404K	401K	201K	90K	3
ML-1M	57.5%	800K	100K	100K	10K	5
SafeDriver	3.64%	476K	59K	59K	600	57

Model	Datasets	Fra	рре	ML	-tag	ML	-1M	SafeI	Driver	ΔAUC	$\Delta Logloss$
Class	Model	AUC	Logloss	AUC	Logloss	AUC	Logloss	AUC	Logloss	1	\downarrow
First-order	LR	0.9331	0.2894	0.9348	0.2960	0.7899	0.5417	0.6244	0.1622	-3.35%	0.0572
*	FM	0.9746	0.1856	0.9488	0.2595	0.8023	0.5332	0.6301	0.1538	-1.22%	0.0179
Second-Order	FwFM	0.9756	0.1784	0.9582	0.2531	0.8046	0.5281	0.6335	0.1532	-0.74%	0.0131
Second-Order	IFM	0.9771	0.1581	0.9515	0.2497	0.8080	0.5286	0.6353	0.1526	-0.70%	0.0071
	FmFM	0.9801	0.1682	0.9552	0.2493	0.8093	0.5264	0.6378	0.1518	-0.39%	0.0088
	CrossNet	0.9800	0.1658	0.9549	0.2480	0.8114	0.5218	0.6336	0.1517	-0.50%	0.0067
	IPNN	0.9809	0.1604	0.9607	0.2295	0.8110	0.5190	0.6373	0.1521	-0.19%	0.0001
High-Order	OPNN	0.9799	0.1683	0.9599	0.2421	0.8112	0.5185	0.6375	0.1519	-0.22%	0.0051
	FINT	0.9807	0.1578	0.9557	0.2430	0.8123	0.5192	0.6349	0.1522	-0.38%	0.0029
	DCAP	0.9801	0.1612	0.9560	0.2428	0.8130	0.5171	0.6390	0.1512	-0.20%	0.0030
	WDL	0.9770	0.1783	0.9599	0.2660	0.8093	0.5226	0.6353	0.1525	-0.44%	0.0110
	DCN	0.9788	0.1621	0.9550	0.2472	0.8125	0.5175	0.6379	0.1514	-0.32%	0.0044
	DeepFM	0.9780	0.1732	0.9586	0.2551	0.8061	0.5259	0.6318	0.1529	-0.69%	0.0117
	xDeepFM	0.9799	0.1750	0.9604	0.2472	0.8082	0.5244	0.6403	0.1515	-0.19%	0.0094
Ensemble	FiBiNET	0.9793	0.1707	0.9548	0.2532	0.8032	0.5313	0.6391	0.1505	-0.56%	0.0113
Elisellible	AutoInt+	0.9783	0.1762	0.9535	0.2562	0.8099	0.5219	0.6310	0.1516	-0.73%	0.0114
	AFN+	0.9786	0.1637	0.9561	0.2468	0.8041	0.5304	0.6374	0.1517	-0.58%	0.0080
	TFNet	0.9798	0.1708	0.9527	0.2551	0.8099	0.5212	0.6387	0.1533	-0.41%	0.0100
	FED	0.9791	0.1606	0.9557	0.2465	0.8128	0.5184	0.6369	0.1534	-0.33%	0.0046
	DCN-V2	0.9803	0.1595	0.9610	0.2330	0.8132	0.5169	0.6406	0.1510	-	-
Oura	$CL4CTR_{FM}$	0.9822	0.1324	0.9621	0.2102	0.8164	0.5136	0.6449	0.1483	0.34%	-0.0140
Ours	RelaImp	0.13%	16.10%	0.11%	8.41%	0.39%	0.64%	0.67%	1.46%	-	-

Table 3: Overall accuracy comparison in the four datasets.

Table 4: Compatibility study of CL4CTR.

Model	Frappe		ML-1M		SafeDriver	
Model	AUC	Logloss	AUC	Logloss	AUC	Logloss
FM	0.9746	0.1856	0.8023	0.5332	0.6244	0.1622
$CL4CTR_{FM}$	0.9822	0.1324	0.8164	0.5136	0.6449	0.1483
FwFM	0.9756	0.1784	0.8046	0.5281	0.6335	0.1532
$CL4CTR_{FwFM}$	0.9815	0.1532	0.8118	0.5192	0.6421	0.1487
DeepFM	0.9780	0.1732	0.8061	0.5259	0.6318	0.1529
$CL4CTR_{DeepFM}$	0.9813	0.1677	0.8113	0.5194	0.6381	0.1504
Autoint+	0.9783	0.1762	0.8099	0.5219	0.6310	0.1516
$CL4CTR_{Autoint+}$	0.9802	0.1684	0.8122	0.5174	0.6402	0.1506
DCN	0.9788	0.1621	0.8125	0.5170	0.6379	0.1514
$CL4CTR_{DCN}$	0.9808	0.1566	0.8164	0.5125	0.6415	0.1494
DCN-V2	0.9803	0.1595	0.8132	0.5169	0.6406	0.1510
$CL4CTR_{DCN-V2}$	0.9812	0.1549	0.8144	0.5153	0.6411	0.1497

Table 5: Impact of data augmentation methods.

Base	Variants	Fra	ppe	SafeI	SafeDriver		
model	variants	AUC	Logloss	AUC	Logloss		
	Base	0.9746	0.1856	0.6244	0.1622		
FM	Random	0.9822	0.1324	0.6449	0.1483		
r IVI	Feature	0.9814	0.1328	0.6303	0.1539		
	Dimension	0.9816	0.1334	0.6404	0.1505		
}	Base	0.9756	0.1784	0.6335	0.1532		
FwFM	Random	0.9815	0.1532	0.6421	0.1487		
LMLM	Feature	0.9822	0.1513	0.6384	0.1483		
	Dimension	0.9811	0.1465	0.6455	0.1508		
	Base	0.9780	0.1817	0.6318	0.1529		
DoonEM	Random	0.9813	0.1677	0.6381	0.1504		
DeepFM	Feature	0.9798	0.1750	0.6341	0.1522		
	Dimension	0.9804	0.1697	0.6353	0.1514		
	Base	0.9788	0.1611	0.6379	0.1514		
DCN	Random	0.9808	0.1566	0.6415	0.1494		
DCN	Feature	0.9804	0.1601	0.6409	0.1508		
	Dimension	0.9803	0.1573	0.6411	0.1504		

Table 6: Impact of different FI encoder $FI_{cl}(\cdot)$.

Base	FI	Fra	ppe	ML	-1M
model	Encoder	AUC	Logloss	AUC	Logloss
	Base	0.9746	0.1856	0.8023	0.5332
FM	DNN	0.9804	0.1404	0.8177	0.5123
TWI	Transformer	0.9822	0.1324	0.8164	0.5136
	CrossNet2	0.9801	0.1438	0.8170	0.5143
	Base	0.9756	0.1784	0.8046	0.5281
FwFM	DNN	0.9809	0.1504	0.8064	0.5264
I WI'WI	Transformer	0.9815	0.1532	0.8118	0.5192
	CrossNet2	0.9822	0.1675	0.8102	0.5231
	Base	0.9780	0.1732	0.8061	0.5259
DeepFM	DNN	0.9804	0.1710	0.8101	0.5206
Deeprin	Transformer	0.9813	0.1704	0.8113	0.5194
	CrossNet2	0.9791	0.1719	0.8109	0.5202
	Base	0.9803	0.1595	0.8132	0.5169
DCN-V2	DNN	0.9807	0.1573	0.8151	0.5144
DCIN-VZ	Transformer	0.9812	0.1549	0.8144	0.5153
	CrossNet2	0.9804	0.1588	0.8141	0.5155

Table 7: Impact of SSL signals in the loss function.

M - 1 - 1	Ι Γ	Fra	рре	ML-1M		
Model	Loss Function	AUC	Logloss	AUC	Logloss	
	\mathcal{L}_{ctr}	0.9746	0.1856	0.8023	0.5332	
FM	+ \mathcal{L}_{cl}	0.9794	0.1485	0.8102	0.5230	
rwi	$+ (\mathcal{L}_a + \mathcal{L}_u)$	0.9812	0.1455	0.8139	0.5175	
	+ \mathcal{L}_{cl} + $(\mathcal{L}_a + \mathcal{L}_u)$	0.9822	0.1324	0.8164	0.5136	
- T	\mathcal{L}_{ctr}	0.9756	0.1784	0.8046	0.5281	
FwFM	+ \mathcal{L}_{cl}	0.9785	0.1553	0.8109	0.5229	
FWFM	$+ (\mathcal{L}_a + \mathcal{L}_u)$	0.9812	0.1536	0.8098	0.5252	
	+ \mathcal{L}_{cl} + $(\mathcal{L}_a + \mathcal{L}_u)$	0.9815	0.1532	0.8118	0.5192	
	\mathcal{L}_{ctr}	0.9780	0.1817	0.8061	0.5259	
DoonEM	+ \mathcal{L}_{cl}	0.9794	0.1701	0.8094	0.5235	
DeepFM	$+ (\mathcal{L}_a + \mathcal{L}_u)$	0.9784	0.1791	0.8103	0.5214	
	+ \mathcal{L}_{cl} + $(\mathcal{L}_a + \mathcal{L}_u)$	0.9813	0.1677	0.8113	0.5194	
	\mathcal{L}_{ctr}	0.9788	0.1611	0.8125	0.5170	
DCN	+ \mathcal{L}_{cl}	0.9802	0.1585	0.8138	0.5150	
DCN	$+ (\mathcal{L}_a + \mathcal{L}_u)$	0.9792	0.1600	0.8129	0.5188	
	$+ \mathcal{L}_{cl} + (\mathcal{L}_a + \mathcal{L}_u)$	0.9808	0.1566	0.8164	0.5125	

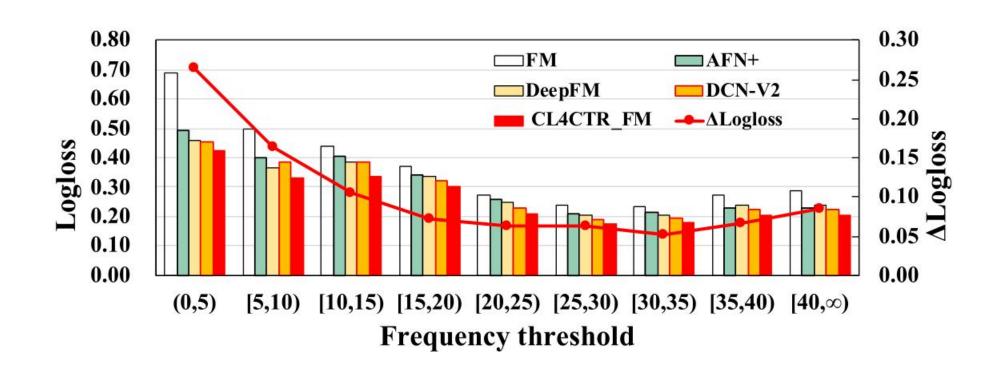
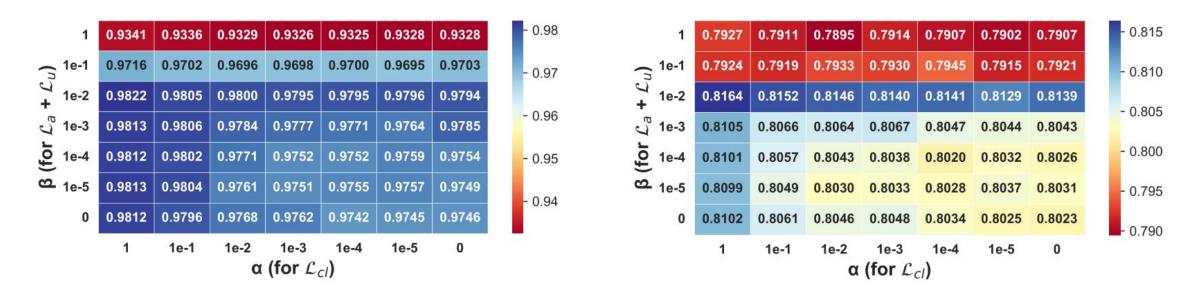


Figure 3: Improvement vs. feature frequency.



(a) The AUC of Frappe

(b) The AUC of ML-1M

Figure 4: Performance of $CL4CTR_{FM}$ w.r.t. different weights assigned to three SSL signals: α for \mathcal{L}_c , β for \mathcal{L}_a and \mathcal{L}_u .

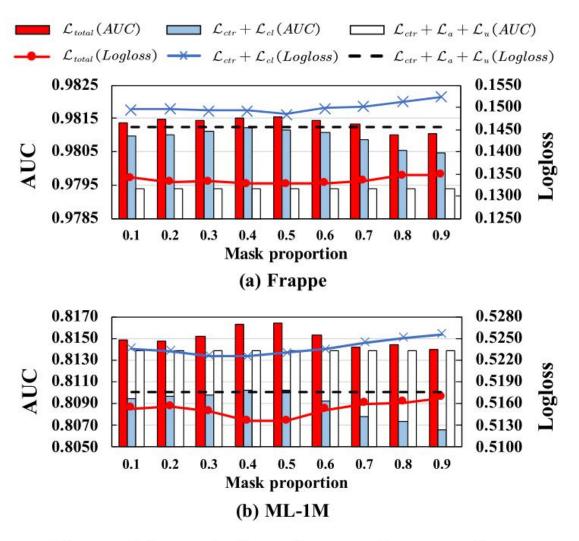


Figure 5: Impact of random mask proportion.

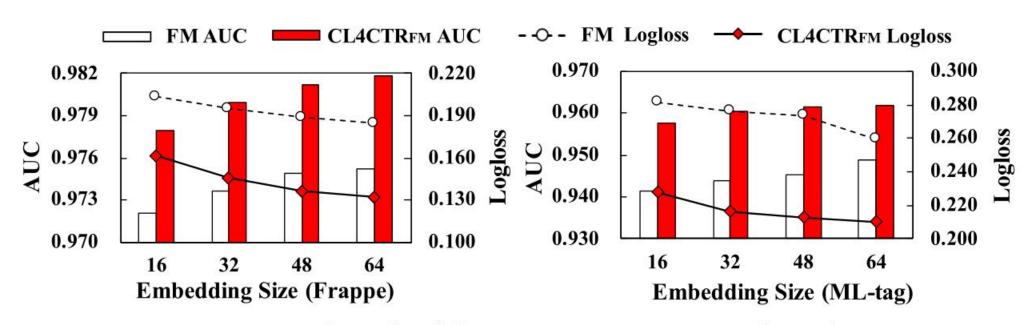


Figure 6: Impact of embedding size on FM and $CL4CTR_{FM}$.

Thanks